过程工程论坛
CO2 + H2O + Sunlight → Chemical Fuels + O2
报 告 人:杨培东 教授 (美国科学院院士)加州大学伯克利分校
报告时间:2016年10月24日(星期一) 15:30-17:30
报告地点:过程大厦五层多功能厅
邀 请 人:王丹 研究员
报告人简介:杨培东(Yang Peidong),加州大学伯克利分校化学、材料科学与工程学院教授,劳伦斯伯克利国家实验室资深教员科学家,国际顶尖的纳米材料学家,美国科学院院士,美国艺术与科学院院士。1993年于中国科学技术大学获得化学专业学士学位,1997年于哈佛大学获得化学专业博士学位。1997年至1998年间,于美国加州大学圣芭芭拉分校从事博士后研究。1999年至今,先后任美国加州大学伯克利分校化学系助理教授、副教授、教授。2011年进入汤森路透集团发布的2000-2010年全球顶尖100化学家名人榜单,同时入选“顶尖100名材料科学家”榜单的首位。2012年4月18日,当选美国艺术与科学院院士。2014年摘得托马斯路透社在物理学方面的引文桂冠奖。2015年获美国麦克阿瑟基金会2015年度天才奖。2016年5月当选美国科学院院士。
报告简介: Solar-to-chemical (STC) production using a fully integrated system is an attractive goal, but to-date there has yet to be a system that can demonstrate the required efficiency, durability, or be manufactured at a reasonable cost. One can learn a great deal from the natural photosynthesis where the conversion of carbon dioxide and water to carbohydrates is routinely carried out at a highly coordinated system level. There are several key features worth mentioning in these systems: spatial and directional arrangement of the light-harvesting components, charge separation and transport, as well as the desired chemical conversion at catalytic sites in compartmentalized spaces. In order to design an efficient artificial photosynthetic materials system, at the level of the individual components: better catalysts need to be developed, new light-absorbing semiconductor materials will need to be discovered, architectures will need to be designed for effective capture and conversion of sunlight, and more importantly, processes need to be developed for the efficient coupling and integration of the components into a complete artificial photosynthetic system. In this talk I will begin by discussing the challenges associated with fixing CO2 through traditional chemical catalytic means, contrasted with the advantages and strategies that biology employs through enzymatic catalysts to produce more complex molecules at higher selectivity and efficiency. I then discuss a number of different photosynthetic biohybrid systems (PBS) architectures from the last few years, and the numerous strategies to interface biotic and abiotic components. Each demonstrates the advantages of PBSs in converting sunlight, H2O and CO2 into food, fuels, pharmaceuticals, and materials. Finally, I will outline the future of this field, opportunities for improvement, and its role in sustainable living here on Earth, and beyond.
附件下载: